

An Optoelectronic Attenuator for the Control of Microwave Circuits

Stephen E. Sadow, Bruno J. Thedrez, and Chi H. Lee

Abstract— An optoelectronic technique suitable for the control of microwave circuits has been demonstrated. Using a coplanar waveguide-photoconductive switch (CPW-PCS), the RF impedance is varied with a laser diode is varied. Using a fiber pigtailed AlGaAs laser diode and a silicon CPW-PCS, it is shown that 30 dB of RF attenuation can be achieved with a laser peak power of 375 mW. Intensity saturation of the Si:CPW-PCS was also observed and characterized to improve the attenuator performance.

I. INTRODUCTION

THE USE of optoelectronic techniques to control microwave circuits and systems continues to be an area of intense research and development [1]–[3]. Besides the inherent speed advantages of this approach, use of a laser to control multiple microwave circuits permits both a high degree of electrical isolation between the control signal and the microwave circuit, and timing precision that can easily be in the picosecond regime [4].

This letter describes a hybrid optoelectronic attenuator scheme suitable for controlling microwave integrated circuits. By optically controlling the microwave impedance of a coplanar microwave transmission line fabricated on a silicon substrate, we have demonstrated up to 30 dB of RF attenuation using a commercial fiber pigtailed AlGaAs laser diode operating at 375 mW, the highest attenuation ever reported for an optoelectronic microwave attenuator [5]–[6]. Earlier work by Platte and Sauerer [6] utilized a similar technique with CW optical illumination; however, they achieved a maximum attenuation of less than 1.8 dB.

A coplanar microwave transmission line is fabricated on a photoconductive substrate, such as silicon (Si) or gallium-arsenide (GaAs). Fabrication of high-speed transmission lines on these materials yields imbedded photoconductive switches resident in the transmission line structure. Illumination of these switches by the appropriate light source creates a conductive plasma in the switch gap, and since this switch is between the transmission line's conductors, the plasma changes the transmission line's characteristic impedance. Thus the creation of a plasma within the transmission line causes the propagating wave to be reflected, with the degree of attenuation a function of the induced plasma density (in the extreme case, the microwave signal is shorted to ground). The attenuation value

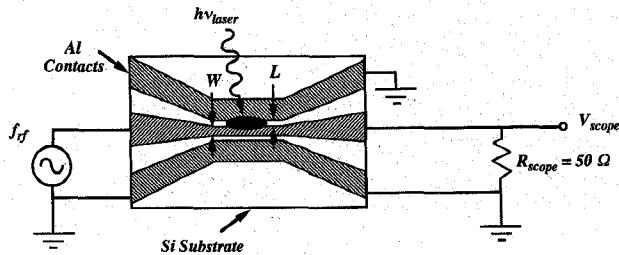


Fig. 1. Hybrid optoelectronic attenuator setup showing placement of Si:CPW-PCS, RF connection to 375 MHz source, and RF connection to matched 50- Ω oscilloscope load. Si:CPW-PCS 1.6 cm \times 5 mm.

is roughly an exponential function of the shunt RF impedance (i.e., the induced plasma density), which can be accurately controlled by varying the incident laser pulse intensity.

II. CPW-PCS DEVICE DESIGN AND FABRICATION

The coplanar transmission line geometry facilitates the use of broad-area laser diodes which can be easily focused onto the gap(s) between the coplanar conductors. Both Si and GaAs can be used as the substrate material, with the primary difference being the carrier recombination lifetime of 5 ns for GaAs and 10 μ s for Si. Fig. 1 shows a cross section of the Si:CPW-PCS in the hybrid attenuator circuit. To achieve ohmic contact to the high resistivity substrate ($\rho_{Si} \geq 6 \times 10^3 \Omega\text{-cm}$), the contact region was ion-implanted using Boron to create a P^{++} region. Aluminum contacts were then deposited onto the ion-implanted regions to form the coplanar waveguide structure. Current-voltage measurements indicate that ohmic contact to the substrate was indeed achieved.

To properly connect the Si:CPW-PCS into a hybrid attenuator circuit, the coplanar structure was flared to permit connection via an SMA connector. The W/L ratio was kept constant to maintain a 50- Ω characteristic impedance at the design frequency of 3 GHz. Consequently, the overall device length was 1.6 cm, resulting in a large parasitic center conductor resistance (59.5 Ω). Fortunately this parasitic resistance would not be present in an operational device since the device length need only be equal to the laser spot size. Scalar network analyzer measurements showed the Si:CPW-PCS has an insertion loss of 4 dB at 10 GHz (once the parasitic resistance contribution is removed).

GaAs CPW-PCS devices were characterized using both single-stripe broad-area laser diodes and a tunable titanium sapphire laser [7]. However, the short carrier lifetime of semi-insulating GaAs (~ 5 ns) caused the RF attenuation to be low (less than 0.5 dB) for the available laser power. Thus,

Manuscript received June 7, 1993.

S. E. Sadow is with the Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783.

B. J. Thedrez and C. H. Lee are with the University of Maryland, Department of Electrical Engineering, College Park, MD 20782.

IEEE Log Number 9212459.

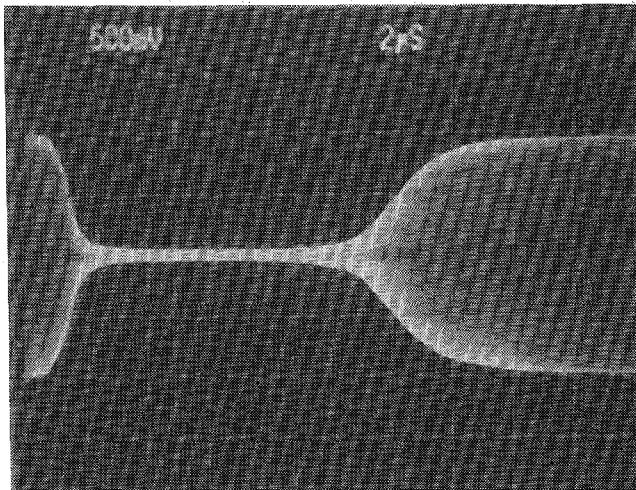


Fig. 2. Si:CPW-PCS output waveform showing attenuation of a 500-MHz envelope of 26 dB using a linear AlGaAs diode array. Pulse width = 3 μ s, RF power = 18 dBm.

in this paper, results using a 10- μ m gap Si:CPW-PCS will be presented, since the carrier lifetime ($\sim 10 \mu$ s) permitted efficient attenuation to be achieved.

III. OPTOELECTRONIC ATTENUATOR EXPERIMENTAL RESULTS

Using a 1-cm linear AlGaAs laser diode array provided by David Sarnoff Research Center [2], 26 dB of RF attenuation was achieved for an optical peak power of 5 W (see Fig. 2). Attenuation is defined as $S_{21} = 20 \cdot \log_{10}(V_{on}/V_{off})$, where V_{on} and V_{off} are the peak RF voltage with the laser on and off, respectively. Both gaps of the Si:CPW-PCS were illuminated due to the rather large spot size (100 μ m \times 5 mm) on the switch.

A commercially available fiber pigtailed AlGaAs laser diode (Spectra Diode Labs no. SDL-2372-P3) was then used to improve the attenuator performance. The laser was operated with a pulse width of 200 μ s at a repetition rate of 375 Hz. Using a $\times 20$ microscope objective (10 μ m spot size), we observed a saturation effect as a function of laser intensity, as shown in Fig. 3.

In order to optimize the attenuator performance, we used a cylindrical lens to expand the beam in one dimension. The measured spot size was 10 μ m \times ~ 2 mm. The attenuation increased to 30 dB, thus validating the saturation hypothesis (see Fig. 3).

IV. CONCLUSION

Silicon was used since the long carrier lifetime in this material yielded better performance. Semi-insulating GaAs devices, also fabricated, performed poorly due to the materials short carrier lifetime. However, it is possible to use

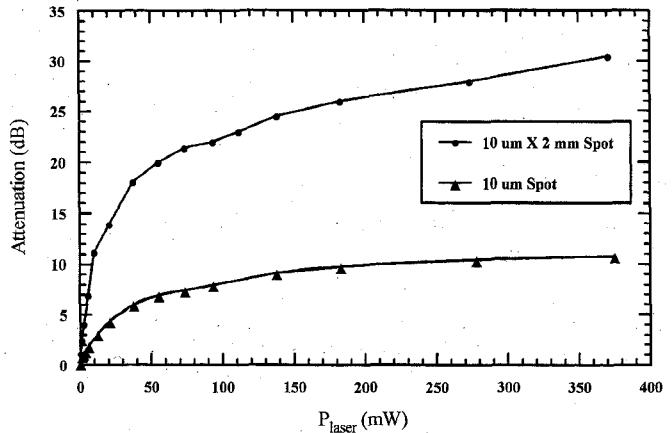


Fig. 3. Si:CPW-PCS attenuation versus incident laser diode peak power with 10- μ m spherical spot size (curve with solid circles) and with 10 μ m \times 2 mm spot size (curve with solid triangles).

GaAs-AlGaAs superlattice structures to increase the lifetime to values exceeding that of silicon [8].

ACKNOWLEDGMENT

The authors thank A. Rosen of the David Sarnoff Research Center for the use of the 1-cm linear laser diode array, and A. Balekjian of the Army Research Laboratory, Fort Monmouth, NJ, for assistance in fabricating the Si:CPW-PCS.

REFERENCES

- [1] A. J. Seeds and A. A. A. de Salles, "Optical control of microwave semiconductor devices," *IEEE Trans. Microwave Theory Tech.*, Vol. MTT-38, pp. 577-585, May 1990.
- [2] A. Rosen, P. J. Stabile, D. W. Bechtel, W. Janton, A. M. Gumbat, J. McShea, A. Rosenberg, R. R. Herczfeld, and A. Bahasadi, "Optically achieved p-i-n diode switch utilizing a two-dimensional laser array at 808 nm as an optical source," *IEEE Trans. Electron Devices*, vol. 26, no. 2, pp. 455-456, Feb. 1989.
- [3] P. R. Herczfeld, A. S. Daryoush, A. Rosen, A. Sharma, and V. M. Contarino, "Indirect subharmonic optical injection locking of millimeter wave IMPATT oscillator," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-34, pp. 1371-1376, Dec. 1986.
- [4] C. H. Lee, "Picosecond optics and microwave technology," *IEEE Trans. Microwave Theory Tech.*, vol. 38, pp. 596-607, May 1990.
- [5] N. Weber, "New reflection-type optoelectronic microwave switch for CW applications," *IEEE Electron. Lett.*, vol. 26, no. 7, pp. 455-456, 1990.
- [6] W. Platte and B. Sauerer, "Optically CW-induced losses in semiconductor coplanar waveguides," *IEEE Trans. Microwave Theory Tech.*, vol. 37, no. 1, pp. 139-149, Jan. 1989.
- [7] S. E. Saddow, B. J. Thedrez, S. L. Huang, T. J. Mermagen, and C. H. Lee, "An investigation of the temperature and electric field dependence of a GaAs microwave photoconductive switch," *SPIE-OE/LASE 93: Optically Activated Switching III, Conf. Proc.*, no. 1873-31, Los Angeles, CA, Jan. 1993.
- [8] R. K. Ahrenkiel, D. J. Dunlavy, B. Keyes, S. M. Vernon, T. M. Dixon, S. P. Tobin, K. L. Miller, and R. E. Hayes, "Ultralong minority-carrier lifetime epitaxial GaAs by photon recycling," *Appl. Phys. Lett.*, vol. 55, no. 11, pp. 1088-1090, Sept. 1989.